4 research outputs found

    Optimal noise-canceling networks

    Full text link
    Natural and artificial networks, from the cerebral cortex to large-scale power grids, face the challenge of converting noisy inputs into robust signals. The input fluctuations often exhibit complex yet statistically reproducible correlations that reflect underlying internal or environmental processes such as synaptic noise or atmospheric turbulence. This raises the practically and biophysically relevant of question whether and how noise-filtering can be hard-wired directly into a network's architecture. By considering generic phase oscillator arrays under cost constraints, we explore here analytically and numerically the design, efficiency and topology of noise-canceling networks. Specifically, we find that when the input fluctuations become more correlated in space or time, optimal network architectures become sparser and more hierarchically organized, resembling the vasculature in plants or animals. More broadly, our results provide concrete guiding principles for designing more robust and efficient power grids and sensor networks.Comment: 6 pages, 3 figures, supplementary materia

    Leaf Venation Networks

    Get PDF

    Chiral Topological Phases in Designed Mechanical Networks

    No full text
    Mass-spring networks (MSNs) have long been used as approximate descriptions of biological and engineered systems, from actomyosin networks to mechanical trusses. In the last decade, MSNs have re-attracted theoretical interest as models for phononic metamaterials with exotic properties such as negative Poisson's ratio, negative effective mass, or gapped vibrational spectra. A numerical advantage of MSNs is their tuneability, which allows the inverse design of materials with pre-specified bandgaps. Building on this fact, we demonstrate here that designed MSNs, when subjected to Coriolis forces, can host topologically protected chiral edge modes at predetermined frequencies, thus enabling robust unidirectional transmission of mechanical waves. Similar to other recently discovered topological materials, the topological phases of MSNs can be classified by a Chern invariant related to time-reversal symmetry breaking. Keyword: Mechanical networks; Topological matter; Chern insulator; Classical mechanics and quantum mechanics; Edge mode
    corecore